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Introduction

N A recent paper, Pargett and Ardema [1] analyze the problem of

range maximization in cruise at constant altitude as a singular
optimal control problem. The same problem is also analyzed using
different approaches by Miele [2] and Torenbeek [3], who consider
the case of quasi-steady flight. In [1], the singular arc that defines the
optimal path is studied; in this study, a simple aircraft model defined
by a parabolic drag polar of constant coefficients is considered and
only one value of cruise altitude.

Many other analyses of cruise optimization can be found in the
literature, with different flight constraints and performance indices;
see, for instance, the study of Menon [4], in which both speed and
altitude are allowed to vary, and the many references therein.

In this work, we generalize the analysis of [1] considering a
general drag polar, so that compressibility effects can be taken into
account. The singular arc in this general case is obtained and is partic-
ularized for both asymmetric and symmetric compressible parabolic
drag polars. The results show that compressibility effects are very
important; the differences with the incompressible case are shown to
be not only quantitative, but also qualitative. We also analyze the
influence of cruise altitude on the optimal paths, showing that it can
be important from a qualitative point of view. The maximum range is
calculated as a function of cruise altitude; in particular, the best
altitude that leads to the largest maximum range is obtained. Results
are presented for a model of a Boeing 767-300ER.

Problem Formulation

The optimal control problem is formulated in [1]. However, it is
summarized here for completeness. It is desired to maximize the
range for a given fuel load or, equivalently, to minimize the following

performance index,
Iy
J=- / vdt
0

with final time ¢, unspecified, subject to the following constraints:
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which are the equations of motion for cruise at constant altitude and
constant heading. In these equations, the drag is a general known
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function D(V, m), which takes into account the remaining equation
of motion L = mg. The thrust 7(V) is given by T = nT),(V), where
7 models the throttle setting, 7,, < 7 < 1, and T),(V) is a known
function. The specific fuel consumption ¢(V) is also a known
function. Thus, this problem has two states (speed V and mass m) and
one control (7). The initial (m,) and final (m,) values of the aircraft
mass are given.

This problem is similar to that of maximizing altitude for a
sounding rocket for a fixed amount of propellant, analyzed by Bryson
and Ho [5].

The Hamiltonian of this problem is given by

1
H=-V+Ay—(@Ty —D)—A,cnTy 3)
m
where Ay and A, are the adjoints. Because H is linear in the control

variable, one can write H = F + S, with

1
S = (kv— - X,,ZC)TM
m

The function § is called the switching function. The necessary
conditions for optimality are stated in [5].

D
V=i )

Singular Arc

Because H is not an explicit function of time, one has H =
constant on the optimal trajectory. Moreover, because 7, is not
specified, one has the additional condition H(¢;) = 0. Therefore, one
has H(t) = 0 on the optimal path. The singular control is obtained
when the switching function is zero (S = 0) on an interval of time;
hence, because H = 0, one also has F = 0. On that interval of time,
one has $ =0 as well. The singular arc is defined by the three
equations: F =0, S =0, and §$=0 (see [5])-

Taking into account the state equations (2) and the following
adjoint equations [5],

o ()
+Amn(Z;TM+ i;f)
A'mz—g—z_x [ 5 (T — D)+lg—Z] (5)
the function S is given by
ot ()
+%[1+xv(lz€ cg—Z D)+A WD] ©)

Note that the terms in the control variable 7 have cancelled out of this
equation.

Hence, the three equations that define the singular arc (F =0,
S =0, and S = 0) reduce to

D A
V+Ai,—= 2 A,c=0
m m
10D oD D
1+kv( o )+Amdv D=0 %
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The singular arc is obtained after eliminating the adjoints Ay, and A,,
from these equations. One obtains the following expression, which
generalizes that obtained in [1]:

Vdc oD aD
D(I—Vc dV) VW—I-V 3m_0 (8)

For a symmetric parabolic drag polar of constant coefficients, this
expression reduces to the one obtained in [1]. Equation (8) defines a
singular line in the state space [i.e., the (V, m) space], which is, in
fact, the locus of possible points in the state space on which optimal
paths can lie.

Dimensionless Singular Arc

Let us consider a general drag polar Cp, = Cp(C;, M), where Cp
and C; are the drag and lift coefficients, and M = V/a is the Mach
number (a being the speed of sound). From the definition of Cj, and
C,, one has D =1pV2Sy,Cp(Cy, M) and C, = (mg/1pV>Sy),
where the equation of motion L = mg has been taken into account (p
is the density and S, is the wing surface area). The following partial
derivatives are obtained:

ap 1 aC aC) D aC,

9D pvsy (20, —2¢ mZL g%

v 2" W( b= LacL+ aM) am~ %ac,
)

Also, let us consider a specific fuel-consumption coefficient C=
C(M), defined by ¢ = (a/Ly)C, where Ly is the fuel latent heat. The
following derivative is obtained:

de 1.dC
£ __" 10
AV~ LydM (10)

In general, C is a function of M and the thrust coefficient C;=
T/(Wro6), where Wy is the reference takeoff weightand § = p/ pg;.
is the pressure ratio (pg; being the reference sea-level pressure).
However, the dependence of C with Cy is, in practice, very weak and
can be neglected (see [2]).

Substituting the previous derivatives into Eq. (8), one gets

a? dc a? aCy
1+ X e+ 28 2+ m
CD( +LH C+CdM) ( +LH C)CLacL

aCp
M—=0 11
Mo (11
which is the general dimensionless expression for the singular arc.
As indicated in [1], in general, one has V¢ <« 1: that is,
(a?/Ly)MC < 1; hence, Eq. (L1) can be simplified into

M dC aC, AC,
( = ) ZcLacL+MW_O (12)

This equation is also obtained by Torenbeek [3] in the case of quasi-
steady flight, by a different approach, for the case in which the overall
engine efficiency is independent of the corrected thrust 7/§, and an
expression equivalent to this one is obtained by Miele [2] in the case
of quasi-steady flight, by a different approach, for the particular case
of a symmetric parabolic drag polar.

Optimal Singular Control

The function § depends linearly on the control variable [say,
§ = A(V,m) + B(V, m)r]; therefore, because one also has § = 0
(where S =0), the singular control is obtained from A(V,m)+
B(V,m)mw =0. After laborious manipulations, one gets the
following:

L 1veew, my (13)
Ty

where G(V,m) is a function of order unity (given by a lengthy
expression not included for the sake of brevity).
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Fig. 1 Singular arc in the C,—-M plane.

In the case of V¢ < 1, one has 7 = D/T),; that is, one has the
well-known cruise hypothesis 7' = D (this is also shown in [1] for the
particular case of a polar of constant coefficients and specific fuel
consumption independent of V).

An additional condition [the generalized Legendre—Clebsch
condition (see [6])] establishes that for the singular control to be
optimal, one must have —(dS/dr) > 0; that is, one must have the
following necessary condition:

B(V,m) <0 (14)

which has been shown to be satisfied numerically, for the aircraft
model defined in the following section, for the entire singular arc
represented in Fig. 1.

Results

The aircraft model considered in this paper for the numerical
applications is that of a Boeing 767-300ER (a typical twin-engine,
wide-body, transport aircraft), with wing surface area of 283.3 m?,
maximum takeoff weight (MTOW) of 186,880 kg, and maximum
fuel weight of 73,635 kg [7]. The drag polar defined by Cavcar and
Cavcar [8] is considered; it is given by

5 5
Cp= (CDO., + Zko,-Kf(M)) + (CDL,. + Zkl,-K-f(M)) C

j=1 j=1

5
+ (CDZ_,_ +> kzij(M)) c? (15)
j=1
where
(M — 0.4)?
KM)=——— 16
=" (10

The incompressible drag-polar coefficients for the model aircraft are
Cp,, = 0.01322, Cp,, = —0.00610, and Cp,, = 0.06000, and the
compressible coefficients are given in Table 1. This polar is valid for
M >0.4; for M <0.4, the 1ncompres51ble drag polar applies
[obtained by setting K = 0 in Eq. (15)].

For the specific fuel-consumption coefficient, the linear model
defined by Mattingly et al. [9] (and approximately depicted by Miele
[2]) is considered; it is given by

L
C=cqg —2(1.0+ 1.2M) a7
asr

where cg; is the specific fuel consumption at sea level and M = 0.
For the CF6-80C2 engines of the model aircraft, we take a
representative value of cg = 9.0 x 1076 kg/(s - N).Z For the fuel
latent heat, we take L = 43 x 10° J/kg.

Data available online at http://www.geae.com/engines/commercial/cf6/
cf6-80c2.html [retrieved June 2009].
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Table 1 Compressible drag-polar coefficients for the
model aircraft

j 1 2 3 4 5

ko;  0.0067 —0.1861 2.2420 —6.4350  6.3428
kyj 0.0962 —0.7602 —1.2870 3.7925 —2.7672
ky; —0.1317  1.3427 —1.2839 5.0164  0.0000

With respect to the thrust, the following simple analytical model is
considered for the thrust coefficient (it is based on Mattingly et al.’s
[9] model for the dependence on M and takes into account the
increase of C; with altitude [10]):

Ty y—1 .\ 1
Cr=—"14+—M 1—-0.49vM)— 18
= (1475 ) Taoavin g as)

where y = 1.4 (ratio of specific heats) and Tg; is the maximum thrust
at sea level and for M = 0 for the cruise rating. This expression
defines the maximum thrust 7, = Wyo8Cy. For the two CF6-80C2
engines of the model aircraft, the following representative value is
considered: Tg; = 5.0 x 10° N (see footnote ¥).

With respect to the atmosphere, the ISA model is considered.

Singular Arc

The singular arc in the C; —M plane defined by Eq. (11) is plotted
in Fig. 1. In this figure, three curves for different values of altitude are
represented, although the differences cannot be noticed, which
corroborates the fact that the altitude-dependent term (a?/L;)MC is
indeed negligible. If one considers the quasi-steady case analyzed by
Miele [2] and Torenbeek [3], defined by Eq. (12), the singular arc
would also show no difference with those represented in Fig. 1.
C. (M) is a multivalued function in the interval 0.7111 < M<
0.7673. This function is composed of two branches, which branch off
at (Cp, M) = (0.7673,0.5220). The figure shows that there is a
maximum value of the Mach number that can be obtained: namely,
M = 0.7673 (for our aircraft model). The larger values of C; in Fig. 1
are very high for cruise; however, for the optimal paths actually flown
by the aircraft (represented at the end of this section), C; ranges from
0.3762 (at 9000 m) to 0.6499 (at 11,000 m), which are appropriate for
the cruise regime.

From the definition of C;, one has

QOSAM2CL(M): w (19)

where W is the aircraft weight, g, = % yPst.Sw» and 84 is the pressure
ratio at the given altitude (say, h,). This expression defines the
singular arc in the W-M plane for each value of h,. Letting
o = W/(qyd,), the singular arc in the w—M plane is represented in
Fig. 2, which is, in practice, independent of the altitude. Hence, the
maximum value of M is the same for all altitudes.

It must be noted that in the case of a symmetric parabolic drag
polar studied by Miele [2], the maximum value of the Mach number
is not obtained, but M increases monotonously, with w tending

- - —incompressible
—— compressible

0.4 0.5 0.6 0.7 0.8 0.9
M [-]
Fig. 2 Singular arc in the ®—M plane.
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Fig. 3 Singular arc in the —M plane for a symmetric polar.

asymptotically to a limit value that is below 0.8. If we consider a
symmetric drag polar, obtained by neglecting the term proportional
to C; in Eq. (15), a result analogous to that reported by Miele is
obtained, as shown in Fig. 3. Hence, the type of drag-polar function
considered affects the results.

As one can see in Fig. 2, for low values of w, until the turning point
is reached, the singular arc defines an increase of M with W, whereas
for large values of w, after the turning point, it defines a decrease.
Note that for given aircraft weight, low values of w correspond to low
altitudes, and vice versa. Therefore, for given initial and final values
of W, at low altitudes one has the well-known behavior of M
decreasing as fuel is consumed, whereas at high altitudes one can
have the opposite. This behavior is shown in Fig. 4 for different
values of /1, where the optimal paths are represented by thick lines
superposed on the singular arcs. In this simulation, we have taken
W; = 1700 kN and W, = 1150 kN, which is a fuel load for a cruise
of 550 kN (approximately 30% of MTOW). Thus, we can conclude

0.8 , , /

0.751
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——compressible

0.7

M [-]

0.65

0.8 1 1:2 1i4 1j6 1j8 2
W IN] x10°
Fig. 4 Optimal paths (2, = 9000, 10000, and 11,000 m).
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Fig. 5 Optimal paths for a symmetric polar (&, = 9000, 10000, and
11,000 m).
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that the cruise altitude has a qualitative influence on the results. In the
case of a symmetric drag polar, the results show the decrease of Mach
number as fuel is consumed, at any altitude, as shown in Fig. 5.
Implicit in the results presented in Figs. 4 and 5 is that the entire
cruise can follow the singular arc. The inequality constraint m,, <
m <1 is satisfied for those optimal paths. The optimal singular
control for the optimal paths represented in Fig. 4 is depicted in
Fig. 6. Note that the required thrust decreases as fuel is consumed.

Compressibility Effects

To analyze compressibility effects, we consider the incompres-
sible drag polar obtained by making K =0 in Eq. (15). The
incompressible singular arcs have been plotted in Figs. 1-4; one
obtains the result that the Mach number increases strongly with
aircraft weight (this is also the result obtained in [1] for an
incompressible model of a Boeing 747-400). Comparing with the
compressible results, we can see that the incompressible drag polar
overestimates the optimal Mach number, which can become quite
large (even supersonic), whereas, as shown before, a compressible
drag polar defines a maximum value of M (or, in the case of a
symmetric drag polar, a limit value of M) in the subsonic region.
Thus, compressibility effects prevent the Mach number from
increasing unrealistically. We conclude that between compressible
and incompressible results there is no agreement, neither quantitative
nor qualitative.

Maximum Range
The range is given by [using the second state equation (3)]

' 1 (W v
R:/’de:——f’—dw
0 8 Jw, cT

I/Wl a(hy)M
Wy (M, hy)T(M, hy, W)

T

daw (20)

i i j

0.8 1 1.2 1.4 1.6 1.8 2
W IN] ) 10°

0.2 L L

Fig. 6 Optimal singular control (&, = 9000, 10000, and 11,000 m).
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Fig. 7 Maximum range.
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where the thrust T = nT), is defined by the singular control (13).
Once the optimal Mach number M (W, h,) is obtained from the
singular arc (19), the integral can be calculated, yielding the maxi-
mum range R,,,,, which is plotted in Fig. 7 as a function of cruise
altitude &,. The results show that there is a best altitude at which
the maximum range is largest: namely, (/14)pe = 9683 m, with
(Rmax)besl =1 17 160 km.

The result for an incompressible drag polar is also shown in Fig. 7,
which we can see is in complete disagreement with the compressible
case, overestimating the value of R, especially at large altitudes.

In[1], acomparison with a standard cruise at constant altitude and
constant speed is made: for a given value of altitude, by considering
an operational value of cruise speed (larger than the optimal-path
speeds), an increase in range for the optimal path of 9.8% is reported.
This is a very large value caused by the fact that the chosen cruise
speed is much larger than the speed for best range in a standard cruise
(a fact also indicated by the authors). Our results show that if at each
altitude the speed for best range is chosen, the optimal-path
maximum range is just slightly larger than the best standard cruise
range: larger by less than 1% in all cases.

A much smaller flight time for the standard cruise is also reported
in [1], as compared with that of the optimal path. Again, this is due to
the particularity of the chosen cruise speed. If at each altitude the
speed for best range is chosen for the standard cruise, which is close
to the optimal-path speeds, the flight times in both flight regimes are
quite close to one another.

Conclusions

Maximum range cruise at constant altitude has been analyzed as a
singular optimal control problem for an aircraft model with a general
compressible drag polar. The singular arc has been obtained in this
general case. It has been shown that compressibility effects must be
taken into account to properly describe the behavior of modern high-
speed subsonic transport aircraft. Comparison with an incompres-
sible drag polar has shown large differences, both quantitative and
qualitative.

The singular arc presents a maximum subsonic value of Mach
number, practically the same for all altitudes (or a limit subsonic
value in the case of a symmetric parabolic drag polar), whereas in the
incompressible case the Mach number increases without limit with
aircraft weight, becoming even supersonic. The maximum range for
the optimal path as a function of altitude presents a maximum, which
defines the best altitude at which the maximum range is largest,
whereas in the incompressible case the maximum range increases
monotonously with altitude, leading to unrealistically large values of
range.

The influence of altitude on the optimal paths has been shown to be
important as well, caused by the maximum Mach number defined by
the singular arc. For a given aircraft, the optimal path for cruise at low
altitudes requires that the Mach number decrease as fuel is
consumed, whereas at high altitudes one has the opposite behavior; at
intermediate altitudes one may have a combination of both. How-
ever, in the case of a symmetric parabolic drag polar, in which the
singular arc presents an asymptotic limit value for the Mach number,
but not a maximum value, one has the same behavior irrespective of
the cruise altitude: namely, a decrease of Mach number as the aircraft
weight decreases.

It must be emphasized that in this work, a constrained regime has
been considered: namely, flight at constant altitude (of interest from
the air traffic control point of view). The optimization problem has
then defined a constrained maximum (it is well known that improved
performance is obtained flying, for instance, a cruise climb, for which
altitude slightly increases).

Other optimality criteria, such as minimizing direct operating cost
(that is, a combination of fuel consumption and flight time, of interest
for airlines) or minimizing fuel consumption with a final-time
constraint (for instance, a given time at the top-of-descent point, of
interest for arrival managers) can be also analyzed. These analyses
are left for future work.
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